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Recent developments in the three-dimensional aerodynamic theory of
inviscid flow in transonic axial compressors are reviewed briefly. Empha-
sis is placed on the newly completed lifting surface theory of a transonic
ducted rotor. The relationship between the lifting surface theory and
axisymmetric through-flow theories of turbomachines is illustrated; a few
examples of the additional information obtainable from the new theory
are then given. Quasi-two-dimensional cascade theory can also be ex-
tracted from the present analysis and the relevance of cascade theory to
the actual three-dimensional problem assessed. Details are reported else-
where, but some of the qualitative conclusions are discussed here. Even
moderate departure from uniform spanwise loading of the rotor blades,
for example, leads to a rather profound influence of the downstream
wakes, suggesting the need for considerable care in applying cascade
data on a direct quasi-two-dimensional basis.

The inviscid, three-dimensional, compressible flow through an axial
compressor rotor or ducted fan can be described in terms of the perturba-
tion of the incoming flow by the rotor and its wake. If the incoming flow
is sufficiently uniform and regular, and if stator interference can be
neglected as a first approximation, then the flow is steady in coordinates
fixed in the rotor. If, moreover, the perturbations induced by the rotor are
“small” they can be described by a velocity potential which satisfies the
convected wave equation.

1 A major part of this work was supported by the United Aircraft Corporation Re-
scarch Laboratories while Dr. Okurounmu was a member of the Research Staff at
that Laboratory. A portion of the work of J. E. McCune was also supported by the
Pratt and Whitney Division of United Aircraft Corporation.
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156 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

For steady flow in rotor coordinates, when the relative Nach number
is everywhere small, the governing equation for the velocity potential
reduces to Laplace’s equation. In this paper, however, we will be con-
cerned with transonic rotors (i.e., rotors operating with subsonic axial
Mach numbers), while the relative Mach numbers at the tip may be
supersonic. The relative Mach number at the hub is usually subsonic and,
therefore, the flow will generally be of a mixed type. The governing
(linear) equation changes from elliptic to hyperbolic type at the ‘‘sonic
eylinder,” r = r,, where w2+ U= a2 Becausc of three-dimensional effects,
however, the linear theory does not exhibit the degeneracy for relative
Mach numbers approaching unity which occurs in two-dimensional
theory.

The coordinate system we use in this paper is fixed in the rotor (fig. 1);
w is the angular velocity of the rotor, U the (purely axial) velocity far
upstream, a the (undisturbed) speed of sound and r the radius; x is the
axial coordinate, 6 the azimuthal. The corresponding dimensionless
variables are (2,6,0) = (wz/U,8,0r/U).

In this paper we will be concerned primarily with the lifting problem,
The thickness problem was treated earlier (see refs. 1 and 2). In those
papers, source-type singular solutions (B radial source ‘“spikes”, where
B is the number of blades in the rotor) were constructed by superposition
of the acoustic eigenmodes of the system in a straight annular duct of
infinite extent. These source spikes, of arbitrary strength, Q(r), were then
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Fioure 1.—Geomelry and coordinale system fizxed in rotor.  is the angular speed of the
rolor relative Lo the shroud.
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distributed over helical surfaces of finite chord approximating the blades,
thus representing blades of arbitrary thickness distribution (with the
limitation, of ecourse, that the thickness-to-chord ratio remain small).
The camber line of the blades was left free in that study so that the
“rotor” produced no lift and hence no positive work. Attention was thus
focused on the effects of blade thickness in three dimensions,

The conditions under which quasi-two-dimensional cascade theory
could be recovered from the three-dimensional theory were delineated in
reference 1, while it was shown in reference 2 that large departures from
quasi-two-dimensionality are to be expected in the transonic regime
because of an acoustic resonance of certain eigenmodes. It was also shown
that the wave drag due to thickness should be considerably smaller than
that corresponding to quasi-two-dimensional (strip) theory.

Reference 3 describes experiments on a ‘“free-wheeling’’ transonic rotor
undertaken in part to verify the latter theoretical result. In this regard,
the experiment was somewhat inconclusive, partly due to the difficulty of
identifying and separating out the various types of drag and/or losses and
partly due to the fact that any actual (rigid) rotor, of course, produces
lift, varying from hub to tip. For a free-wheeling rotor (zero torque
input) the result is that vorticity is shed downstream, adding substan-
tially to the drag.

In order to complete the three-dimensional potential theory, the basis
elements of the theoretical lifting problem were set up in reference 3.
Following the general procedure of superposing the appropriate eigen-
modes to construct singular (Green’s function) solutions, B bound vortex
spikes were constructed, having arbitrary strength T'(r). (The method is
almost identical to that used in ref. 4, except that a finite hub-to-tip ratio
was included and an important error occurring in ref. 4 was removed.)

The most important new feature of the lifting problem, relative to the
thickness problem, is the necessity of including the downstream wakes
of shed vorticity (one helical wake for each blade) with strength propor-
tional to dT'/dr, the rate of change of bound circulation along the span.
This is done by a slight modification of the method of Reissner (ref. 5),
to allow for the presence of the hub and shroud. Thus, a ““wake potential”
is included in the downstream flow, added to the acoustic eigenmodes, and
construction of the bound vortices at the blades proceeds as before, with
the wakes now included. It is interesting to observe that the wakes them-
selves excite acoustic modes, except when T'(r) = constant.

The acoustic eigenmodes mentioned above are versions of the familiar
“spinning” modes associated with cylindrical geometry (refs. 6 and 7).
If the relative Mach number at the tip exceeds unity, some of these modes
propagate undiminished in strength (in the inviscid, linear theory)
upstream and downstream, while the remaining modes die out exponen-
tially at large distances from the rotor. The propagating modes are said
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to be above “cut-off”’; modes near cut-off can set up the acoustic reso-
nances mentioned above. One effect of such resonances is to create a
significant spanwise flow, yielding strong communication between hub and
tip. Under these conditions (which require supersonic tip Mach numbers),
a hub section with a subsonic relative Mach number can nevertheless
have a pressure distribution over the blade which is more typical of
supersonic flow than subsonic flow (refs. 1, 2, and 8).

In reference 9, the lifting theory was refined and extended. In that
paper, the blades were characterized by their total bound vorticity,
I'(r), and the first-order static pressure rise across the rotor, the turning
angles, the torque required, etc., were determined as functions of T. For
example, the first-order static pressure rise was found to be

~Pe)— (P—w) 20 2 ! T'(n)\_ —20r r

Cpom Bl Pem) 2T 2 [ gy )= (1)
p—U%/2 gz \1—h2J, ULy B2 ULy

where n=r/rr=0/or, h=ry/rr, < > denotes the azimuthal average of a

given quantity, g*=1—U?/a?=1—M?, and Lr=2=rr/B, the blade

spacing. The subscripts T and H denote tip and hub, respectively. The

sign convention on T is such that it is negative for lifting blades. The

corresponding torque required, to first order, is

1
O = —p_wU27T2B / 7 an‘ (2)
h

By extending these calculations consistently to second order (a procedure
analogous to the computation of induced drag and wave drag in ordinary
wing theory), the losses due to energy stored in the wakes of shed vorticity
(when T'(r) #constant) as well as those duc to acoustic radiation (for
supersonic relative tip Mach numbers) were estimated. These are pre-
sented in figure 2 for a typical rotor (B=40, h=0.8), in terms of a
dimensionless efficiency decrement. Since these results are essentially
“integral relationships” (i.e., obtained from momentum balances, etc.)
we expect them to carry over without change to the lifting surface theory,
which will be the main subject of our discussion. Despite the linearizing
assumptions inherent to the theory, we estimate that these results will be
accurate up to static pressure ratios across the (single) rotor of about 1.3
(see eq. (1)). It should be noted that the “concentrated bound vortex
solution” of reference 9 is not a lifting-line theory in the sense of Prandtl,
since no quasi-two-dimensional assumptions were used.

The lifting surface theory, in analogy to the procedures described in
reference 1, can be constructed from the concentrated bound vortex
solution by distributing the bound vorticity, with its associated wakes,
over helical surfaces representing the blades. Details will be made avail-
able shortly in reference 10. In the next sections, we describe the salient
features of the theory and some of its more interesting results.
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B= 40, h=08, Co,/Ly2106 Fi1GURE 2.—Losses for a typical
&= a+bn, D= (G-I, /T rolor configuration as caused by
FOR M=0.6 o3=1.333 (1) energy stored in wakes
M=05 o5 1.732 " (D #0) and (2) acoustic radia-
T T T T ) tion (o1>0,). Solid Ui -
1>0,). Solid lines (left

L1 hl;nd scale)’, give values of the

efficiency decrement, normal-

10 ized to C1, an average (over the

span) sectional lift coefficient.

09 The relation between Cp and

T', defined in the text, is shown,

Qe.:_c_.'-. for this rotor geometry, by the

/ULy broken line (righi-hand scale).
07 . .

The sharp increase in losses due

06 to acoustic radiation as ot ex-

ceeds os ts readily observable

05 for both D=0 and D =0.2213.

In the latter case, the efficiency

04 decrement associated with non-

uniform loading is comparable
to the acoustic radiation loss.
(Figure taken from ref. 9.)

LIFTING SURFACE THEORY

The velocity potential obtained by distributing bound vorticity, in the
manner described, over the helical surfaces representing the rotor blades
can be written '

3 cax ™0
bz = ( / 56 di+ j s dt 3)
where ¢ labels the axial location of the bound vortex filaments while
t=z 0Lz <coxmax)
£=0 <0
£=cax™® T2 Cax ™™

If we denote by ¢(r) = tan™! 6= tan™! (wr/U) the complement of the
stagger angle at each radius, the axial projection of the local chord is
cax (1) = €08 ¢, and in (3) cax™*® is the maximum of this quantity along
the span. The elemental potentials 6¢* and &¢¢ are, respectively, the
upstream and downstream velocity potentials associated with B radial
strips of concentrated bound vorticity located on the helical surfaces
r=§, 0=wt/U+lxr/B, I==+1, 23, &5, .... Each strip has elementary
chord dg/cos ¢ and strength v (n,£) df/cos ¢. Their associated wakes of
free vorticity, proportional to d/dn(y/cos ¢), are included in 8¢%. The
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total bound vorticity (per blade) at each radial station is the local blade

circulation:

cax(r) .
P =T = [ 7(n8) di/eos (4)
0

The elemental potentials occurring in (3) can be expressed as follows
(ref. 10; real part implied)

8p*(2,0,0;¢) =

8¢ (2,6,0;¢) =

£ e ()] ()

+3 Z{ e [hnk(s)ﬂnk(s)]}

n=1 k=1 )\ﬂk

oo [ (5-2)]
o) ()

w§

Y (77)5)

#®) <z——>+62 208,

+Z — ( 1)"xx(n,§) exp(inB¢)

n=l1

70k(£) ‘j’_f ( o
B e[ (=) ()

© 0 —_ "hnk — i
+ZZ{( 1) (E)_iﬂz(n;) [hnk(£)+7nk(£)]}

n=1 k=1 Ak
Xexp Il:MB (9— g)_}

(B2

In these expressions, the “radial eigenfunctions” R.p(kao/07) =Rap(knin)
are orthonormal combinations of Bessel and Neumann functions whose
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properties, including the radial eigenvalues k., are determined by the
requirement of vanishing radial velocity at hub and shroud. Details are
available in references 1 and 3. The quantities A.x, determining the azzal
behavior of the acoustic modes, are given by

no ,K,.k" o ivL~
T Ve
,30’1' n’B ﬁ
r (7)
Kok
0k = """
Bor

These quantities are either pure real (yielding axial decay) or pure
imaginary (yielding propagating, ‘“‘spinning” modes). Since the .. are
all greater than |nB| (ref. 11), the latter possibility occurs only if
or>M/B=uwr,/U, and then only for a finite number of modes at each n;
k=1,2,...k,* The condition or>0, implies supersonic relative Mach
numbers at the tip.

In (6), the variable { =0—wz/U =60—2z is the helical coordinate used by
Reissner (ref. 5) and the (generalized) function {; is a “sawtooth fune-
tion,” the essential properties of which are that 8{:/00=1, 3¢1/dz=—1
everywhere, while the function itself is discontinuous (by an amount
F2x/B) at {==4x/B, £3x/B, . ... The combination of the second and
third terms in (6) makes up the wake potential mentioned earlier,
representing the free vorticity shed in the wakes and the induced flow
between them. The wake functions, x.(n,£), can be written in terms of
modified Bessel functions of the first and second kind:

Xn(1,8) =xn5(nBnor,§) = an(£) Ins(nBo) 1B (§) Kap (nBo)

relend] g

cos ¢(d’)

g 9
+1.5(nBo) f —,K,,B(nBa')a'—[
ox 40 ]

’
g

ad

—K,3(nBo) /v a’(jj I.z(nBe)d' — [Mjl do’

cos ¢ (o)

ds’ )

where a.(f) and B.(¢) involve definite (radial) integrals over
9/0a[v(n,£)/cos ¢] and depend on the parameters oy and o7, as well as
nB (refs. 3, 5,9, and 10). Note that each x.(n,§) vanishes when v/cos ¢
is independent of o (or ) ; i.e., when I'= constant.

The quantities 7(£), v« (£) and k.. (£) are the coefficients of expansions
of the functions v(n,£)/cos ¢ and x.(n,) in terms of the orthonormal
radial functions R,p(x.n). Thus,
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b K
cos p(nor) 7(8) +E70k(f)30( ok7)

=D vnk(E) Rup(kmen); n>0 ¢ (9)
cos ¢(n07)  jm

(18 = S (8) R (k)

k=1

The usual Fourier-Bessel formulas for the expansion coefficients apply;
for example

1
Yk (§) = / 7 dn b R.p(knin)
A cos ¢(nor)
while
e 2 v(ng)
D= [ nn (10)
Note that
%x(mnx)
dgy(§) =T

0

as defined in equation (1), and that the coefficients vo (£), as well as the
ha(£) vanish whenever v/cos ¢ is independent of radius.

In the special case for which c.x=constant and v(n,£)/cos ¢ is fac-
torizable (i.e., y/cos ¢=T(5)g(£)) we have the especially simple relation-
ShipS, ’Yﬂk(E) = Fnkg(s); hnk(f) =Hﬂkg(£)y ‘7(5) = f‘g(E), where, from (4);

[" o a=1 an)

Tnk, Hai and T are then identical to the corresponding quantities occurring
in the concentrated bound vortex solution (refs. 9 and 10), in which the
blades are characterized by T'(r).

The three-dimensional lifting surface solution, deseribed formally by
equations (3) through (10), has the desired property of producing dis-
continuities (at the helical surfaces representing the blades) of the velocity
component parallel to the blade surface. In fact, if we denote this com-
ponent by v,-, the discontinuity in ».- is —y(9,z), and the blade loading is
—p—oUry(n,z), where U,=(U?+w%?)!2, The detailed proof that (3)
with (5) and (6) has this property is available in reference 10. At the
same time v,, the velocity component perpendicular to the helix of
advance, is continuous, and v,/ U, defines the slope of the blade camber
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line (in the absence of thickness effects) for any loading. As is usual in
wing theory, if the blade shape is specified and the loading required,
the mathematical problem becomes one of inverting an integral equation—
in our case an unusually complicated one.

Actually, if one is given a shape for the rotor blades (desired thickness
and camber), the thickness probiem must be solved first (refs. 1 and 2)
since the distribution of sources used to obtain the desired thickness
distribution inevitably produces a camber distribution of its own. This
“camber due to thickness” must then be included in the distributed
vortex problem if one is to obtain the desired overall camber.

The results given in this paper, however, will be restricted to those for
the indirect lifting problem: given the loading, and omitting thickness
effects, what is the associated camber line of the blades, how does the flow
and pressure field develop, and what is the performance of the rotor? The
last of these questions has been substantially answered in reference 9,
since most performance characteristics calculable in this theory do not
depend on the details of the chordwise loading distribution but primarily
on T'(r). This is not to say that the chordwise loading distribution is not
important; for example, it will affect boundary-layer behavior, stall
margins, etc., of the rotor and is of great interest for these and other
reasons.

RELATION TO AXISYMMETRIC “THROUGH-FLOW*
THEORY

Let us consider first the mean pressure level (i.e., the azimuthal average
pressure) developed by the rotor. We have generally, in the strictly
linear approximation,

P=p— Pow)=—p-UV1+0%, (12)
where
vz =1V, COS @+ g SIN @

__w (9 9¢
T UA1+a2 (6z+60> (13)

Then for any axial station downstream of the rotor x>c.x™*®, using
(3)~(6) and averaging over 8, we obtain

(p(z,7) )= (P-w)

36 3¢
=—wre 5, o
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B _ 1 ] Ca, w,
=—p_q 2‘:_—!32 {I‘+§ k=21 /0 dE exp [—)\Ok <Z—EE>J ’YOk(f)Ro(Kow)}
(14)

(max)
X

Upstream of the rotor (x<0) the corresponding result is

(p(@,r) )*—(P-w)
wB & r°
Py /
If we recall that all y’s are zero when v/cos ¢ is independent of » (imply-
ing “constant work” design, I'=constant=T'), we see from (15) that for
a constant work rotor, there is no change in mean pressure (starting
from upstream) until the rotor itself is reached, while from (14) we see,
for the same design, that the entire mean static pressure rise is achieved
within the rotor passage and the “far-field”” value (compare cqs. (14) and
(11)) is already attained at x = c, (™%,

On the other hand, if T'(r) #constant, then the ve’s do not vanish and
there is essentially exponential approach, away from the rotor, to the
respective upstream and downstream values of the mean pressure level.
This type of result is typical of axisymmetric theories of axial compressor
flows (ref. 12), but the rate of approach is, of course, sensitive to the
assumed area distribution of the flow annulus (ref. 13). For the particular
case we have considered (ry/rr=-constant), the ‘“decay length” for
approach to the upstream and downstream values is of order 8(rp—ryg) /7
(seeeq. (7) and refs. 11 and 12). At large (subsonie) axial Mach numbers,
approach to the asymptotic states is very rapid, as expected (ref. 12).

The result (1) or (14) indicates a constant radial static pressure
profile far downstream of the rotor, at obvious variance with the need
for a radial pressure gradient to balance the centripetal acceleration asso-
ciated with the induced tangential velocities (see eq. (18)). This is
simply a result of the lincarization used throughout the present theory
(for example, eq. (12)). However, comparisons between appropriate
azimuthal averages of the results from the present three-dimensional (but
linear) theory and higher-order (but two-dimensional) “actuator disc”
results are expected to suggest means of identifying and including the
more important nonlinear effects. We have already shown (ref. 9) that
the sccond-order caleulations, used in that paper to compute losses, are
consistent with “radial equilibrium”. It should be possible to include
certain nonlinear effects, such as centrifugal effects, consistently in a
modified three-dimensional theory. Further work in this direction is
underway.

The results (14) and (15) can be understood in terms of the mean
(azimuthally averaged) stream-surface deflections associated with non-
uniform loading. (Note that the wake functions themsclves, depending

(max)
ax

w§

dt exp [)\Ok <Z—E>} Bo(xoem)yoe ()  (15)
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only on ¢ and 5, yield zero first-order pressure perturbations.) If I'(r)
increases from hub to tip, more work is done by the rotor at the tip than
at the hub. This appears initially (just behind the rotor) as a higher
pressure near the tip than at the hub. In fact, using (7) and evaluating
(14) for z=c.x'™*0 with the assumption c,x®™*®/rr<<1, we find, imme-
diately behind the rotor,

wB

oo (T +D) (16)

(P (Cax7) )= (P-w)=—»
where we have used the first of equation (9) and also equation (4). The
higher (lower) pressure at the tip (hub) must relax to the constant value
given by the linear theory far downstream of the rotor. Moreover, the
azimuthally averaged flow is effectively subsonic if M <1 (ref. 12). This
means contraction of the outermost streamtubes and expansion of those
near the hub. The stream surfaces must, therefore, be deflected cutwards.
In fact, we find

O‘TT /’" ( I‘)
—const =777 dyp{l—= 17
0 (7]) {¢)=const ULT'/] . nan T ( )

provided T'— I'«T. These average radial stream-surface deflections are
zero, as required, at =" and =1 and are positive if T increases radially
and negative if T decreases radially. There is no (average) streamline
deflection if T'=constant=T'.

Associated with (14), (15), and (17) are certain azimuthally averaged
tangential, axial, and radial velocity profiles. Downstream of the rotor
(see also ref. 9), these are given by

BT (n)

2mr (18)

(1=

(02 {f~wrm>

. w
T 2rUR
1 o0 Ca:
+5 2 /
2 k=1 "0

—— B [ c“x(mEX)
(vr>d=41r;U IE/O df exp I:_')\Ok (Z—(ﬁUg>] vor (€) Ry’ (xom) (20)

(max)
x

d exp [—)\Ok (z—%g):l ’Yok(E)Ro(Kokn)}‘{" U (19

The actual velocity field derivable from (3)—(6), of course, is curl-free
except at the B helical sheets (wakes) of concentrated shed vorticity,
this vorticity having strength proportional to dI'/dy and being oriented
s0 as to lie in the helical sheets representing the wakes.
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By contrast, the vorticity of the (mean) downstream velocity field
defined by (18)-(20) is

o= T ( or )
Q= curl ()= Tor 1, i 0 (21)
Thus, since Q" /Q,{» =wr/U, an important effect of defining an “equiv-
alent axisymmetric” flow (through averaging the more detailed three-
dimensional theory) is to replace the original concentrated vorticity by an
equal total amount of vorticity which is, however, distributed uniformly
over the flow annulus, yet still oriented along the zeroth-order streamlines.
This distributed downstream vorticity is an important feature of axisym-
metric through-flow theories (ref. 12); results such as (21), (19) and
(14) help to establish connection between the latter theories and that
described here.

It should be clear from the preceding that the three-dimensional (but
linearized) potential theory contains many important elements of the
axisymmetric theories and has, in addition, the capacity to describe
azimuthal variations superposed on those results. Some interesting
examples of the latter are given in the following section.

THREE-DIMENSIONAL PRESSURE FIELD (LIFTING
PROBLEM)

The azimuthally-averaged pressure fields (14) and (15) are the same,
regardless of whether the compressor is transonic or not (ref. 12). But
the azimuthal variations about these mean levels are vastly different,
depending on (1) whether or not the tip relative Mach number is super-
sonic and (2) whether or not the rotor is uniformly loaded (along the
blade span).

The latter observation comecs from consideration of the conditions
under which transonic “acoustic resonance” (see the introduction) can
occur for the strictly lifting problem. As mentioned earlier, when
M2, =M2(140r?) > 1, some of the quantities A, (eq. (7)), as determined
by the linear inviscid theory, can vanish. A glance at equations (5) and
(6) shows that when this happens some of the acoustic eigenmodes can
be amplified indefinitely unless the corresponding kn(¢) are identically
zero. This is the “resonance’” to which we have referred. However, we have
already noted that the h.(£) are, in fact, zero if the spanwise loading is
constant at each £ Thus a constant work rotor with similar chordwise
loading profiles (i.e., v(n,£)/cos ¢=Tg(£)) excites no transonic reso-
nance. A more general way of saying this is that any (purely lifting)
transonic rotor which sheds wakes of free vorticity can excite acoustic
resonances of spinning modes and otherwise not. (Finite values of hax
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can be regarded as representing excitation of acoustic modes by the
wakes.) Of course, the finite thickness of the blade of any real rotor will
always induce transonic resonances (ref. 2).

If transonic resonance is excited, one or several acoustic modes will be
singled out and tend to dominate the pressure field, although the (linear)
azimuthal average of the pressure fields will vanish. Naturally, the
resonant modes do not attain infinite amplitudes; their finite amplitudes
are easily predicted by including either viscous effects (asin refs. 1 and
2) or certain nonlinear effects (as in ref. 10) or both. In the following, we
present typical numerical results extracted from reference 10; included
are pressure-field results for a typical rotor (B=40, h=0.8) operating
both subsonically (M.;=0.9) and transonically (M,,=1.054). In refer-
ence 10, both a uniformly loaded rotor (I'=T) and a rotor with lincarly
increasing I' (), characterized by an increase of approximately 20 percent
in I' from hub to tip, were analyzed. However, for lack of space we present
here only the results for a uniformly loaded rotor. The axial Mach number
in the examples discussed is M =0.5. The specific loading distributions
used in the calculations were of the factorizable type v/cos ¢=T{(q)g(¥),
where

8

wC a.x2

g(§) = \/E(Cux_g)

Note that this chordwise loading distribution is symmetric about the
midchord, nonsingular, and satisfies the Kutta condition and the nor-
malization (11).

Our first example (fig. 3) shows the “ncar field” subsonic upstream
pressure fluctuation, at x/c.x= —0.1, over an azimuthal period A0=2x/B
(corresponding to a single blade passage). Five radial stations are indi-
cated. The tip Mach number being 0.9, we have or=1.46. The pressure
side of the airfoil corresponds to the smaller values of Bf/2x. For the
solidity noted in figure 3, the projection of the helix of advance forward
from =0 (for which Bf/2x =1} is the blade leading edge) to x/cax=—0.1
corresponds to Bf/2x =0.35. Note that the high- and low-pressure regions
remain relatively well identified just upstream of the airfoil (typical of
subsonic flow). The fluctuating signal is superposed on a zero mean pres-
sure level, in agreement with (15) for a uniformly loaded rotor. This
pressure signal is almost entirely dominated here by the (n=1, k=1)
eigenmode, not because of any resonance effect, but because the exponen-
tial decay of this mode (for B=40) is significantly slower than that of
the remaining modes.

Let us contrast this behavior (fig. 4) with the same rotor of the same
solidity, but at the transonic state of M,,=1.054. In this case, or=1.84,
and the angle (B8/2x) of projection of the leading edge is approximately
0.3. The fluctuating pressure signal is significantly distorted, relative to
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FiGURE 3.—Pressure variation just
upsiream of typical uniformly
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the subsonic case, by the presence of a large number of modes which are
now above cut-off and therefore propagate. (For example, the k=1 modes
for all n are above cut-off at this tip Mach number; the (7,2) mode is also
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above cut-off, etc.) The shift toward smaller angles of the expansion region
just ahead of the blade is consistent with the expected formation (for the
specified loading) of an expansion fan emanating from the leading edge
of the blade tip (y=1), but the flow field is still predominantly subsonic
in character over the whole annulus. Hence, no really clear-cut develop-
ment of a quasi-two-dimensional type flow ficld can be identified in this
region.

A clearer distinetion between hub and tip section contributions to
the pressure pattern seems to develop just behind the rotor (figure 5)
indicating some semblance of quasi-two-dimensional behavior. Here, the
pressure signal oscillates about the uniform downstream level given by
(1) or (14) at each 5 (because of the uniform loading) but a fairly strong
local compression followed by an equally strong expansion fan seems to be
emanating from the aft portions of the blade tips.

The results available in reference 10 indicate similar behavior for the
nonuniformly loaded rotor, except that the near-field upstream and down-
stream pressure signals oscillate about different mean levels for each 7,
in accord with (15) and (14). One other major difference occurs for the
case of nonuniform T', however; namely, the expected transonic resonance
appears (see earlier discussion). For M,r=1.054 the (1,1) mode is the one
nearest resonance, and the relative fluctuations in the near-field pressure
that it produces are noticeably larger than for the constant-T' case. The
radial structure of this resonant mode also makes it more difficult to
separate hub and tip behavior in the strip theory sense.

Far-field pressure signals (for example, at x/c.x= —5.0, 2/cax= +6.0)
were also computed in the work reported in reference 10. As expected,
essentially no pressure fluctuation about the azimuthal mean is observed
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at subsonic tip Mach numbers, while substantial fluctuations, com-
parable to the near-field values, are found to be present as soon as M,
exceeds unity.

CONCLUDING REMARKS

In this paper, we have discussed some of the aspects of the three-
dimensional aerodynamic theory of an axial compressor rotor. Our main
emphasis has been on the newly developed lifting-surface (distributed-
vortex) theory which forms the complement to the previously developed
(distributed-source) theory for blade thickness effects.

In the third section, we showed that the present theory contains many
aspects of the axisymmetric through-flow or actuator-dise theories, while
in the fourth section we gave examples of the type of additional informa-
tion that the three-dimensional theory offers.

It may be recalled that in reference 1 the relationship between three-
dimensional and quasi-two-dimensional cascade theory was emphasized.
Not surprisingly, in the lifting problem just as in the thickness problem,
cascade theory, and corrections to it, can be derived readily from the
three-dimensional theory. The techniques involved are similar to those in
reference 1; details and some examples are available in reference 10.

We find, in short, for the purely lifting case, that quasi-two-dimensional
cascade theory is an excellent approximation, at least within and near the
blade passage, for uniformly loaded rotors, even in the transonic regime.
However, for a rotor with only moderate variations in spanwise loading,
we find that the wake-induced velocities have a surprisingly large effect on
the effective incidence of the blades. Much work remains to be done,
therefore, before the complete relationship between cascade theories
(and/or data) and the aerodynamics of three-dimensional compressor
rotors will be fully understood. Our expectation is that the present theory,
despite the limitations imposed by our assumption of small disturbances,
neglect of viscosity, etc., will be a useful key in relating all the various
approximate theories to the full three-dimensional problem. It has pieces
of each part of the puzzle.
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DISCUSSION

J. C. VRANA (MeGill University) : Do you find that, as blade number
is increased, the 3-dimensional solutions converge toward the infinitely
bladed 2-dimensional approximations, regardless of circulation dis-
tribution? Going now in the opposite direction (as I have been mostly
involved with low aspect ratios) would you agree that below a certain
number of blades (10 to 12) it becomes impossible to design them for a
prescribed variation of circulation (say 20 percent variation in circulation
from mean)?

McCUNE (author): With regard to the first question, the 3-dimen-
sional solutions converge, provided you are not in the transonie regime,
to the 2-dimensional caseade solutions in the limit of large blade number
and hub tip ratio approaching unity. This we showed for the thickness
case in 1956 (refs. 1 and 2) and for the lifting case in reference 9 of the
paper. On the other hand, for the “infinitely bladed” 2-dimensional
approximation, by which I take it you mean the axisymmetric through-
flow theory emphasized in the present paper, the 3-dimensional solutions
will converge to that 2-dimensional approximation as B— «, regadless of
regime. These are, however, formal mathematical results; I believe that
in almost any practical case 3-dimensional effects play a role.

Going in the other direction, the answer would have to depend on what
you mean by “impossible’”’. With present theory, insofar as it does not
include induced velocity effects, I think it would be impossible to correctly
design the blades, even for blade numbers as high as 40 or 80 (let alone 10
or 12), with 20 percent variation in circulation from mean. This is espe-
cially true in the transonic regime. While the theory presented in our
paper is limited by the linearizing assumptions, it is intended as a step in
the direction of making such design possible. We intend to pursue it. An
important step is to include thickness effects (ref. 1) since they induce
camber of themselves.




